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Optimal chattering modes in the problem of the control
of a Timoshenko beam�

M.I. Zelikin, L.A. Manita

Abstract

The linear problem of the control in a plane of the motion of a Timoshenko beam, one end of which is clamped to a rotating disc
is considered. The angular acceleration of the disc serves as the control. It is proved that, in the problem of the quenching of the
first mode, the optimal control has an infinite number of switchings in a finite time interval (a chattering control). The construction
of a suboptimal control with a finite number of switchings is described.
© 2006 Elsevier Ltd. All rights reserved.

In the theory of the optimal control of the vibrations which arise in mechanical systems, a model of an Euler–Bernoulli
beam has been the object of numerous investigations. The Timoshenko beam theory is a development of the
Euler–Bernoulli system, which takes into account the rotational inertia and the shearing deformation of the sec-
tion which occurs during the vibrations. The basic assumption in the Timoshenko beam model is that planar sections,
normal to the beam axis prior to deformation, also remain planar after the deformation of the beam, rotating as a rigid
whole through an angle �(x, t) during which the sections do not necessarily remain normal to the beam axis.1,2 The
model of a homogeneous Timoshenko beam is described by a system of second-order partial differential equations

where � is the density of the mass of the beam, E is Young’s modulus of elasticity, G is the shear modulus, I is the
moment of inertia, P is the cross-section area, k is the Timoshenko shear coefficient, and w(x, t) and �(x, t) are the
displacement of the beam in a direction perpendicular to the axis of the beam at the position of rest and the angular
displacement of the cross-section of the beam at the instant t at a point x respectively.

In investigating the problem of controlling a slowly rotating Timoshenko beam, the controllability of the beam
from a specified position into a position of rest within a quite long time has been proved in Refs. 3,4. A control was
constructed in Ref. 5 which stabilizes the whole system at the position of rest. The conditions for exact controllability
were obtained in Ref. 6 and reachability sets have been described.

The problem of minimizing the mean square deviation of a Timoshenko beam from the equilibrium position is
considered below. It is proved that, in the problem of the optimal quenching of the first mode, the control has an infinite
number of switchings in a finite time interval.
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1. Formulation of the problem

We will consider a model of a Timoshenko beam under the assumption that one end of the beam is clamped to a disk
of radius r. It is assumed that the motion of the beam is controlled by the acceleration of the disc. By using rescaling,
the equations of a Timoshenko beam can be reduced to a system with a single real parameter � > 03

(1.1)

where �(t) is the angle of rotation of the disc at the instant of time t. The boundary conditions

(1.2)

are specified, where l is the length of the beam. They signify that one end of the beam (x = 0) is clamped and the other
(x = l) is free. We now define the initial conditions

(1.3)

We shall henceforth assume that l = 1 and � = 1 and consider the problem of minimizing the deviation of the beam from
the equilibrium position in the sense of the following functional

(1.4)

where �(x, t) =
(

w(x, t)

�(x, t)

)
and H is the Hilbert space L2([0, 1],C2), that is, a linear space of the vector functions

y(x) =
(

y1(x)

y2(x)

)
which are such that

with a scalar product

We now consider a subset of the Hilbert space H

(1.5)

and define a linear differential operator A: D → H by the formula

Here, a prime denotes differentiation with respect to x.
The problem of the optimal control of the beam can then be written in the following form: it is required to minimize

the functional (1.4) along the trajectories of the control system

(1.6)
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where g(x) =
(

−(r + x)

−1

)
and u(t) = �̈(t) is a scalar control, which we shall assume satisfies the constraint

−1 ≤ u ≤ 1.

2. The eigenvalues and eigenfunctions of the differential operator

It has been proved in Refs. 3,4 that A is a strictly positive, self-adjoint operator which possesses a complete
orthonormal system of eigenfunctions hj(x)(j ∈N) and a corresponding system of eigenvalues {�j ∈R} which are
such that 1 < �j ↑ ∞ as j → ∞.

Theorem 1. The eigenvalues �j solve the equation

(2.1)

Proof. Suppose � is an eigenvalue of the operator A, and h(x) is the corresponding eigenfunction, that is,

(2.2)

We now put

(2.3)

The general solution of Eq. (2.2) has the form

where

and D±
1 and D±

2 are certain complex constants. Since the function h(x) satisfies conditions (1.5), the constants D±
1 and

D±
2 are determined from the homogeneous system of algebraic equations

(2.4)

A non-zero solution of system (2.4) exists if and only if the determinant of this system is equal to zero, which is
equivalent to Eq. (2.1).

Since �j > 1, to calculate the eigenvalues it is sufficient to consider the equation which corresponds to the expression
in brackets in (2.1) being equal to zero:

(2.5)



M.I. Zelikin, L.A. Manita / Journal of Applied Mathematics and Mechanics 70 (2006) 264–273 267

Fig. 1.

or what is equivalent to this:

(2.6)

We recall that �± depends on � by virtue of expressions (2.3). The left-hand side of Eq. (2.6) is denoted by V0(�) and
a graph of the function V0(�) is shown in Fig. 1.

We will now study the asymptotic form of the eigenvalues of the operator A when j → ∞. We put � = √
� and

define the function

When � → ∞, the function �(�) is asymptotically equivalent to the following function:

Lemma 1. Constants N0 > 0, B1 > 0 and B2 > 0 exist such that, for all � ≥ N0,

The lemma is proved by direct calculations.

Lemma 2. A constant N1 > 0 exists such that, in the domain � ≥ N1, the roots of the equation �0(�) = 0 have the form

(2.7)

where �k = 	(2k − 1)/2, k ∈N are the solutions of the equation 1 + cos(2�) = 0.

Proof. Consider the Taylor expansion of the function �0(�) in the neighbourhood of the point �k

Solving the equation �0(�) = 0, we obtain the equality (2.7).
Hence, two different roots of the equation �0(�) = 0 are found for sufficiently large � in a small neighbourhood of

the point �k. Note that the distance between them is of the order of 1/�k.
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Lemma 3. Positive constants m+ and m− exist such that

Proof of Lemma 3 is easily obtained from the definition of the function �0(�) and Lemma 2.

It follows from Lemmas 1–3 and the theorem on an inverse function, applied to �(�) at the point �±
k , that a pair

of roots 
±
k of the equation �(�) = 0, which has no other roots, corresponds to each pair of roots �±

k of the equation
�0(�) = 0.

Lemma 4. As k → +∞, the following estimate is true for the roots of the function �(�)

The following estimate for the eigenvalues of the operator A can be obtained from Lemma 4.

Theorem 2. Two similar eigenvalues �−
k and �+

k of the operator A correspond to each sufficiently large value of k
such that

(2.8)

Proof. It follows from the definition of the function �(�) that an eigenvalue � of the operator A corresponds to each

root of the equation �(�) = 0. We put �±
k = (
±

k )
2
.

On applying Lemmas 2 and 4, we obtain

from which relation (2.8) follows.

Remark. The distance between the different pairs of similar eigenvalues of the operator A increases linearly with k.

The first thirty two eigenvalues of the operator A are shown in Table 1.

Remark. An operator Ã was studied in Ref. 4 which is somewhat different from the operator A. However, the spectrum
of Ã is identical to the spectrum obtained in the case of the operator A. The operators A and Ã obviously reduce to one
another.

Table 1

k 1 2 3 4 5 6 7 8

ζ2
k

2.467 22.207 61.685 120.903 199.859 298.556 416.991 555.165
λ−

k
1.623 21.568 61.054 120.273 199.231 297.927 416.363 554.537

λ+
k

3.587 23.333 62.812 122.030 200.987 299.683 418.118 556.293
λ+

k
− λ−

k
1.964 1.765 1.759 1.757 1.757 1.756 1.756 1.756

k 9 10 11 12 13 14 15 16

ζ2
k

713.079 890.732 1088.124 1305.255 1542.126 1798.108 2075.084 2371.172
λ−

k
712.451 890.104 1087.495 1304.626 1541.498 1798.108 2074.457 2370.545

λ+
k

714.207 891.860 1089.252 1306.384 1543.253 1799.863 2076.212 2372.300
λ+

k
− λ−

k
1.756 1.756 1.757 1.758 1.755 1.755 1.755 1.755
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3. Transition to a system of ordinary differential equations

Since the eigenfunctions of the operator A form a complete orthonormal system, we can expand the solution of Eq.
(1.6) and the right-hand side of this equation in the system (hj(x))∞

j=1

If Cj = 0 for a certain j, we shall say that the value of the radius of the disc r is singular. It has been proved in Ref. 5
that the set of singular values of r is not greater than a denumerable set. We shall henceforth assume that the value of
r is not singular, that is, Cj �= 0 for any j ∈N. After substitution into Eq. (1.6), we obtain

By virtue of the orthogonality of the system of eigenfunctions, we obtain a denumerable system of ordinary differential
equations

Using Parseval’s equality we conclude that the functional (1.4) can be written in the form

Moreover, expanding the initial conditions (1.3) in a system of eigenfunctions

we obtain the initial conditions for the functions sj(t): sj(0) = �0
j , s′j(0) = �.

For the majority of initial states, associated with natural external actions on the beam, the main part of the vibrational
energy occurs in the fundamental normal mode and, as a first approximation when constructing the optimal solution
in problem (1.1)–(1.4), it therefore makes sense to consider the problem of the optimal quenching of the first mode.
The criterion of optimality, that is, the minimization of the mean square deviation facilitates minimal action on the
remaining vibration modes during the process of the quenching the principal mode.

In this way, we arrive at the following optimal control problem, that is, the problem of a controllable harmonic
oscillator with a quadratic cost functional: it is required to minimize the functional

(3.1)

in the trajectories of the control system

(3.2)

where s is a phase variable, u is a scalar control, −1 ≤ u ≤ 1 and the initial conditions s(0) = �0
1, ṡ(0) = �1. The structure

of the optimal control, of the switching curve and the properties of the optimal trajectories for this problem have been
investigated earlier in Refs. 7,8.



270 M.I. Zelikin, L.A. Manita / Journal of Applied Mathematics and Mechanics 70 (2006) 264–273

4. Specific modes and modes with chattering

The construction of the optimal synthesis for problem (3.1), (3.2) is based on a technique developed in a number
of papers.7,9 We will present a brief review of the corresponding results and consider the problem of minimizing the
functional

on the set of solutions of the control system

with the boundary conditions x(0) ∈ B0 ⊂ Rn, x(T ) ∈ BT ⊂ Rn. Here x is the phase coordinate, u is a scalar control and
u ≤ 1. The mappings �i : Rn → R, fi : Rn → R(i = 0, 1) are specified by functions of the class C∞ and B0, BT are
smooth manifolds. The admissible controls u(t) are measurable and the corresponding trajectories x(t) are absolutely
continuous. In order to solve the problem, the Hamiltonian H = H0(x, ) + uH1(x, ) is set up, where

Using Pontryagin’s maximum principle, we construct the Hamilton system

(4.1)

with Hamiltonian H. The maximum condition determines the optimal control: u = +1 when H1 > 0 and u = −1 when
H1 < 0: H1 = 0 is the surface of discontinuity of the Hamilton system.

The extremal x(t), (t) of Pontryagin’s maximum principle is said to be singular on a segment (t0, t1) if H1(x(t),
(t)) = 0 when t ∈ (t0, t1). This means that the extremal lies on the surface H1 = 0. In order to find the control on a
sigular trajectory, it is necessary to differentiate the identity with respect to t by virtue of system (4.1) until a control u
with a non-zero coefficient occurs in the resulting expression. It is well-known that this can only take place in an even
step 2q of differentiation. The number q is called the order of a singular trajectory. We shall say that the intrinsic order
of a singular trajectory is equal to q if

in some open neighbourhood of a singular trajectory. If the equalities are only valid at points of the extremal (x(t), (t),
t ∈ (t0, t1), we shall say that q is the local order of the extremal.

Suppose the intrinsic order of a singular trajectory is equal to q. If the functions

are independent in the neighbourhood of the extremal, then, on supplementing them up to an independent system
with the functions wj(x, )(j = 1, . . . , 2n − 2q) and adopting (z, w) as the new variables, the Hamilton system for
Pontryagin’s maximum principle can be reduced to the form

The singular states lie on the manifold z = 0. Chattering arises on joining up the non-singular states with singular states.
By the term chattering trajectory, we mean a trajectory which has an infinite number of switchings of the control in a
finite time interval.



M.I. Zelikin, L.A. Manita / Journal of Applied Mathematics and Mechanics 70 (2006) 264–273 271

Fig. 2.

5. Optimal synthesis for a controlled harmonic oscillator with a quadratic cost functional

We put

The following theorem arises from results obtained previously7,10 for problem (3.1), (3.2).

Theorem 3.

1 The origin of coordinates is a singular trajectory of orders 2.
2 A neighbourhood of the origin of coordinates U� exists such that:

a) for any S0 ∈ U� an optimal trajectory S*(t) exists with initial condition S*(0) = S0, which reaches the origin of
coordinates in a finite time with an infinite number of control switchings;

b) in the neighbourhood U� the switching curve has the form

The optimal control ũ(s, ṡ) = −C above the curve � and ũ(s, ṡ) = C under the curve � (Fig. 2).

6. Construction of a sub-optimal mode for a controlled harmonic oscillator with a quadratic cost functional

The optimal trajectories of a controlled harmonic oscillator with a quadratic cost functional have an infinite number
of switchings of the control in a finite time interval. The need arises to approximate the optimal chattering trajectories
with trajectories with a finite number of control switchings. In order to construct a suboptimal trajectory with a finite
number of switchings, we will consider two auxiliary problems: the problem of the fastest stopping of the oscillator
and the simple time-optimal problem.

6.1. Problem of the fastest stopping of an oscillator
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Fig. 3.

The scalar control parameter u varies in the interval [−�, �], where �>0, �>0. An optimal synthesis was constructed
in Ref. 11 for the case when � = � = 1. The construction is easily extended to the case of arbitrary � and �. The optimal
synthesis is constructed in the following manner Fig. 3: when u = �, the phase trajectories of the system are ellipses

(
√

�s − �/
√

�)
2 + ṡ2 = d2 with their centre at the point (�/

√
�, 0) and, when u = −�, the ellipses (

√
�s + �/

√
�)

2 +
ṡ2 = d2 with centre at the point (−�/

√
�, 0). A phase point moves clockwise along the ellipses. Switchings of the

control occur on a separate curve which consists of a denumerable number of semi-ellipses. Above the switching
curve and in the arc OL1, the optimal control is u* = −� and, below the switching curve and in the arc OK1, the
optimal control is u* = �. Any optimal trajectory has a finite number of switching points which depends on the
initial conditions. The further the initial point from the origin of coordinates, the greater the number of control
switching points.

The optimal synthesis in the problem of the fastest stopping of an oscillator is quite lengthy. However, for the
stopping of an oscillator, an optimal control for the time-optimal problem, which is simple in its implementation, can
be used, and the system reaches the origin of the coordinates in a finite time. An estimate of the error in the time of
reaching the origin of the coordinates compared with the optimal solution has been presented in Ref. 10.

6.2. The time-optimal problem

The scalar control is bounded: −� ≤ u ≤ �, � > 0, � > 0. It is well-known11 that the optimal control û(t) is the bang-bang
control and it has at most one switching.

We will now describe the process of constructing a suboptimal solution for problem (3.1), (3.2). For the point S0, we
consider a segment of the trajectory S*(t) (S*(0) = S0), which is optimal in problem (3.1), (3.2), containing exactly N
switchings. Suppose this segment ends at the point SN. Starting from the point SN, we use the control û(SN ) or u*(SN)
(û(SN ) is the optimal control in the time-optimal problem and u*(SN) is the optimal control in the problem of the
stopping of the oscillator). Suppose ĴN (S0) is the value of the functional on the trajectory which has been constructed
in this way and J*(S0) is the value of the functional on the optimal trajectory S*(t).

Theorem 4. An �-neighbourhood of the origin O� and constants M > 0, � > 0 exist such that following the estimate
holds for any point S0 ∈ O�

Hence, in practice, a control with a finite number of switchings in a finite interval of the motion can be used; at the
same time, it is possible to ensure that the error in the functional is as small as desired.12
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